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ABSTRACT: This research work is devoted to the development of a mathematical model
for the simulation of the flow of polymer melts through the metering and die regions of
single screw extruders. The sets of the governing equations (flow and energy) are solved
using the finite element method. The power-law model is used to describe the non-
Newtonian rheological behavior of the fluid. The standard Galerkin technique is used
in conjunction with the continuous penalty scheme to solve the flow equations. Due to
the low thermal diffusivity of the polymer melts, a streamline upwinding Petrov–
Galerkin method is used to obtain convergent and stable results for the energy equa-
tion. This method is based on the extension of a previously developed scheme. The
overall solution strategy is based on the Picard iterative scheme. Simulation results are
obtained for the flow of a polypropylene melt through the metering and die zones of a
laboratory scale extruder. To validate the proposed model, the results of the computer
simulations are compared with experimentally measured mass flow rate and pressure
profile. These comparisons show that there is very good agreement between the model
predictions and actual data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 676–689,
1999
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INTRODUCTION

Single screw extrusion is one of the most impor-
tant fabrication operations used in plastics and
rubber industries. It is defined as a continuous
process in which polymeric materials are changed
to a viscous form, pumped and pressurized using
a screw, and shaped to final form. It is a standard
operation in the polymer processing field, and is
widely used for many products such as profiles,
fibers, strips, films, etc. It is also employed in a
variety of manufacturing techniques, for exam-
ple, injection and blow moldings. The develop-
ment of a superior design for the screw and die,

and also the optimization of the process, would
enable more efficient use of raw materials and
energy. For the screw, the most important param-
eters that should be taken into consideration dur-
ing the design of the channel geometry are (i)
generation of a uniform pressure and tempera-
ture distribution throughout the screw and (ii)
elimination the possibilities of occurring stagna-
tion points and partially filled regions. On the
other hand, the design of extrusion dies is mainly
determined by the required extrudate cross-sec-
tional shape. In addition to the above mentioned
parameters, efforts are normally made (i) to es-
tablish a streamlined flow pattern in the flow
domain, (i) to generate an optimum pressure pro-
file consistent with screw system, and (iii) to keep
the die swell as low as possible. These tasks may
be best achieved by developing a robust mathe-

Correspondence to: M. H. R. Ghoreishy.
Journal of Applied Polymer Science, Vol. 74, 676–689 (1999)
© 1999 John Wiley & Sons, Inc. CCC 0021-8995/99/030676-14

676



matical model based on physical law and assump-
tions to predict the flow field behavior in response
to the changes of the domain geometries and pro-
cess conditions. A detailed literature survey indi-
cates that over the last three decades, mathemat-
ical modeling of the extrusion process and specif-
ically the flow in the metering and die zones have
been frequently studied with varying degrees of
complexities.1–15 The quantitative description of
the flow of polymer melts in the screw channel
and die requires consideration of sophisticated
parameters, such as the non-Newtonian rheologi-
cal behavior of polymer melts, complex three-di-
mensional flow patterns, nonisothermal condition
established inside the flow domain, as well as
the intricate boundary conditions. Consequently,
most of the attempts have been concentrated on
developing simplified models that normally give
approximate results. Comparisons between the
experimental data and the results of such models
show that there is generally an error level about
10–20% between the calculated and measured
mass flow rates.8 The apparent discrepancies be-
tween the experiments and simulations can be
attributed to some of the unreasonable simplify-
ing assumptions that are normally made in the
development of the mathematical models for the
simulation of polymer melts flow through the
melt conveying and die regions. The most impor-

tant neglected features of the melt flow in single
screw extruder are the three-dimensional flow re-
gime and complex heat transfer process that
takes place inside the channel and die systems.
Moreover, using the simplified numerical meth-
ods or analytical techniques for the solution of the
governing equations further reduce the general
applicability of these models.

The aim of the present work is to develop a
mathematical model for the simulation of the flow
of polymer melts through the metering and die
regions of single screw extruders. This model can
be used not only to study the effects of various
process conditions and geometry variations on the
performance of the process but also to predict the
operating point of the extruder machine. In addi-
tion, in order to investigate the capability of the
developed model, the results of the simulations
are compared with experimental data. The main
assumptions made in the development of this
model follows:

1. The flow regime of the polymer is laminar
and steady state, and the fluid is incom-
pressible.

2. The rheological behavior of the polymer
melt is considered to be described by the
power-law model.

Figure 1 Flow domain of the unrolled screw channel.
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3. There is no slip of the polymer melt on the
solid boundaries.

4. The screw is assumed to be fixed within a
rotating barrel and the channel is unrolled
as a rectangular domain.

It can be seen that except for the fourth assump-
tion, no limitation is associated with this problem.
Therefore, the present model not only can effec-
tively cope with the flow in single screw extruders
but it offers a general method to any other flow
problems encountered in polymer processing. It
should be noted that although this model does not
include the melting and solid conveying zones, it
can be easily integrated with the previously de-
veloped models (see, for example, refs. 3–5 and
16) of these zones and thus uses the results of
them as boundary conditions.

In the following sections, we first describe the
mathematical model and then introduce the finite
element formulations associated with this prob-
lem. The results of the computer simulation for
the flow of a polypropylene melt (T30S) through
the metering and die regions of a Haake–Buchler
19.05 mm (0.75 in.) single screw extruder are
presented in the next section. These results are
compared with measured pressure profile along

the flow domain and output mass flow rates. It is
shown that there are good agreements between
the model predictions and experimental data,
which confirm the validity of the present model.

MATHEMATICAL MODEL

The governing equations of the steady-state,
nonisothermal, and laminar flow of an incom-
pressible non-Newtonian fluid in a three-dimen-
sional Cartesian coordinate system are given as
follows17:

—The continuity equation,

= z v 5 0 (1)

—The flow equation,

r
Dv
Dt 5 2=p 1 = z t 1 rg (2)

—The energy equation,

rCp

DT
Dt 5 = z ~k=T! 1 t : =v (3)

Figure 2 Flow domain of the die.
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In these equations, v is the velocity vector, p is
the pressure, r is the material density, g is the
vector of gravity force per unit mass, T is the
temperature, Cp is the heat capacity, and k is the
thermal conductivity. Stress tensor t is given for
a generalized Newtonian fluid in term of rate-of-
deformation tensor D by

t 5 hD (4)

where h is the shear dependent non-Newtonian
viscosity of the fluid. The rate-of-deformation ten-
sor is given as

D 5 =v 1 ~=v!T (5)

Viscosity h in the present study is given by the
power-law equation expressed as

h 5 h0S1
2 I2D ~n21!/2

e2b~T2TR! (6)

where h0 is the consistency of the fluid, n is the
power-law index, TR is a reference temperature, b
is the temperature sensitivity factor, and I2 is the
second invariant of the rate-of-deformation tensor
defined as

I2 5 D : D (7)

FINITE ELEMENT FORMULATION

Flow Equations

The finite element formulation of the flow equa-
tions can be based on either a pressure-velocity

Figure 3 Finite element mesh of the screw channel.
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(called mixed or u-v-p) scheme or the use of pen-
alty methods.18 In the present study we have
selected a penalty technique because these
schemes produce a more compact set of working
equations, thus reducing the required computer

storage and computational cost. Furthermore, it
is shown that for highly viscous fluids considered
here, the penalty method gives more accurate so-
lutions than the u-v-p method.19

The basic step in the penalty formulation is the
elimination of the pressure term in momentum
equations using

Figure 4 Finite element mesh of the die.

Table I Extruder Geometry and Dimensions

Parameter Value

Barrel diameter (m) 0.019177
Screw diameter (m) 0.01905
Screw helix angle (deg) 17.66
Screw pitch (m) 0.01905
Axial length (m) 0.1077
Initial height (m) 0.002345
Final height (m) 0.001905
Channel width (m) 0.01498

Table II Properties of Polypropylene Melt

Power-law model
Power-law index 0.5
Power-law constant (Pa-sn) 6010
Reference temperature (°C) 200
Temperature sensitivity (°C21) 0.0067

Physical properties
Thermal conductivity (W/m°C) 0.1873
Density (kg/m3) 749.6
Heat capacity (J/kg°C) 2428
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p 5 2l*~= z v! (8)

where l* is a penalty parameter. It can be shown
that if we choose l* to be a relatively large num-
ber, the continuity equation will be satisfied. It is
recommended that the value of the l* be chosen
as a function of viscosity to ensure uniform con-
tinuity enforcement in non-Newtonian prob-
lems.18 Therefore equation l* is written as

l* 5 hl (9)

In this equation, h is the local viscosity and l is a
large constant positive number. This number is
generally determined by numerical trial and er-
ror. In this work, it is found that a number of 1010

gives the most accurate results. Elimination of
the pressure as a primary unknown by the pen-
alty method can be achieved either by direct sub-
stitution of the pressure in the flow model using
eq. (8) (continuous penalty method) or by using
the discretized form of this equation to derive a
set of compact working equations in the finite
element scheme. The pressure field in these
methods is found by a secondary calculation such
as the variational recovery method.20 In the
present work we have used a continuous penalty
technique since numerical experiments showed
that this method gives a more accurate pressure
field in our problem.

Following the procedures of weighted residual
finite element schemes, the prime unknowns in

Figure 5 (a) Velocity in the down channel (x) direction (40 rpm). (b) Velocity field in
cross channel (z) direction (40 rpm).
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the model are replaced by trial function represen-
tations that in the context of a discretized domain
are given by polynomial relationships. This re-
sults in the derivation of basic residual state-
ments of the scheme. These residuals are then
multiplied by weight functions and their integrals
over an element domain are set to be zero. Using
the Galerkin method in which the weight and the
interpolation functions are identical, the working
flow equation of our scheme is derived as

@Kf
(e)#$v% 5 $Ff

(e)% (10)

where {v} is the vector of unknowns, @Kf
(e)] and

$Ff
(e)} are the elemental stiffness and load vector,

respectively [see appendix for the components of
eq. (10)].

Energy Equation

Due to the low thermal conductivity of polymers,
the main mechanism of heat transport in a flow
regime involving these materials is convection. It
is well known that the numerical simulation of
convection-dominated transport phenomena by
the standard Galerkin method gives unstable and
oscillatory results. To eliminate such oscillations,
in the present problem, we have used a stream-
line upwind Petrov–Galerkin technique. This
method was originally developed by Brooks and
Hughes21 for two-dimensional problems. In the
scheme used in our work, we have extended this
technique for three-dimensional problems. The
weight functions are described by the following
relation:

Figure 5 (Continued from the previous page)
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Wi 5 Ci 1
F

ivi2 ~v z =C! (11)

where Wi and ci are the weight and interpolation
functions, respectively, and F is a multiplier that
in the present scheme is defined by

F 5
ajhjvj 1 ahhhvh 1 azhzvz

2 (12)

where aj, ah and az are scalar parameters related
to mesh Peclet number; hj, hh, and hz are the
element characteristic dimensions; and vj, vh, and
vz are the velocity components in the local ele-
mental coordinate system j, h, and z, respectively.
Similar to flow equations, the weighted residuals
finite element method is used for energy equation.
For the convection term, Wi is used while ci (stan-
dard Galerkin) is applied to the other terms of eq.
(3). Carrying out integration by parts and using of
an appropriate interpolation relation for temper-

ature, the finite element working equation corre-
sponding to energy equation is derived as

@Kv
(e) 1 Kd

(e)#$T% 5 $FT
(e)% (13)

where {T} is the vector of unknowns, Kv
(e) and Kd

(e)

are the elemental convection and conduction stiff-
ness matrices, respectively, and $FT

(e)} is the ele-
mental load vector (see appendix ).

In order to complete the mathematical model,
the governing equations must be solved in con-
junction with the appropriate sets of boundary
conditions. The boundary conditions used in this
work are as follows: On the solid walls the no-slip
and constant temperature are used, which are the
first type boundary conditions. For the inlet and
outlet of the flow domains, pressure and stress
free conditions (second type boundary conditions)
are specified. It should be noted that the stress-
free boundary condition is only used for the outlet
section of the extrusion die. This is because that
at the outlet, the material would be in contact
with atmosphere.

Figure 6 Pressure field in screw channel (40 rpm).
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GLOBAL SOLUTION STRATEGY

Using the isoparametric mapping20 the working
equations of the present scheme are cast into a local
(natural) coordinate system. The members of the
coefficient matrices are then computed for each el-
ement by a Gauss quadrature method. The result-
ing algebraic equations are assembled into a global
matrix and after imposing the appropriate set of
boundary conditions are solved by a frontal solution
algorithm.22 The presence of the convective terms in
the momentum and energy equations, as well as the
dependency of the local viscosity on the velocity
gradients and temperature, make this set of equa-
tions nonlinear. Consequently a decoupled iterative
procedure based on the successive substitution
method (Picard iteration method)18 has been
adopted. The first iteration starts using a set of

given initial velocity and temperature values, and
the coefficient matrices are computed and assem-
bled. The global equations are then solved to obtain
the velocity field. The obtained velocity field in turn
is used in the calculation of viscosity and the solu-
tion of the energy equation. Using the computed
velocity and temperature fields at the end of the
first iteration, a new iteration step is performed.
The procedure is repeated until the velocity and the
temperature fields are converged. The convergence
criterion used in this work is given by

1Oi51

N

uX i
r11 2 X i

ru2

O
i51

N

uX i
r11u2 2

1/2

# d (14)

Figure 7 Velocity field in die (40 rpm).
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where Xi
r denotes the flow variables (velocity or

temperature) at degree of freedom i at iteration
cycle of r, and d is the convergence tolerance (say,
1023 ).

RESULTS AND DISCUSSION

Based on the above described computational meth-
ods, a computer code is developed in FORTRAN
language. This computer program has been em-
ployed to simulate the flow of a polypropylene
(T30S) melt through the metering and die regions of
a single screw extruder. To verify the proposed
mathematical model and the numerical algorithm,
the results of the simulations are compared with
the experimental runs on a laboratory extruder
(Haake HBI SYS 90). Flow domains of the unrolled
screw channel and die along with the boundary
conditions are shown in Figures 1 and 2. The do-
mains of the screw channel and die are divided into
1000 and 1920 eight noded Lagrangian elements
with total number of nodes equal to 1331 and 2457,

respectively (see Figs. 3 and 4). Trying several mesh
designs, these configurations are found convergent.
Pre- and postprocessing steps in the present analy-
ses are performed using an interactive commercial
package called GEOSTAR.23 The flow of the poly-
mer melt over the screw flight tips (leakage flow) is
also taken into account based on the method pre-
sented in ref. 3. Six screw speeds (10, 20, 30, 40, 50,
and 60 rpm) are selected. For each experiment, the
pressure at the start of the flow into the metering
zone, at the end of the metering zone or the start of
the flow into the die region and two locations on the
die, mass flow rate, and entrance temperature are
measured (see Figs. 1 and 2). During the simulation
of the flow in the screw channel, the measured pres-
sure at the input and output sections are considered
as the secondary type boundary conditions. The
temperature on the solid walls and the inlet section
is set to 200°C. For the analysis of the flow in die,
the measured pressure and calculated temperature
at the output section of the screw are considered as
the input pressure and temperature to the die re-
gion. The temperature of the solid surfaces is also

Figure 8 Pressure field in die (40 rpm).
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set to 200°C. For both analyses (screw and die), the
output mass flow rates are evaluated using the in-
tegration of the obtained velocity fields. Rheological
behavior of the polypropylene melt has been studied
using a capillary tube viscometer. It is found to be
described by the power-law model. Tables I and II
give the screw dimensions and the physical and
rheological properties of the polypropylene melt
used in this work.

The results of the simulation for a sample
screw rotational speed of 40 RPM are presented
in Figures 5–8. Figures 5a and 5b show the ve-
locity fields in down-channel (x-axis) and cross-
channel (z-axis) directions, respectively. As can be
seen, the flow in the cross-channel direction (Fig-
ure 5b) corresponds to a closed-circuit flow pat-
tern. This is as expected and is in agreement with
earlier analyses.1–3 The pressure distribution in
the screw channel domain is shown in Figure 6.
Due to the reduction of the channel height and
also the temperature rise along the down-channel
direction, a nonlinear pressure profile is obtained.
Figures 7 and 8 show the velocity and pressure
fields in die, respectively. Considering the geom-

etry of the flow domain in the die and also the
direction of the polymer melt flow, the calculated
velocity and pressure distributions are as ex-
pected and closely correspond to each other. It can
also be seen in Figure 8 that the pressure drop in
the slit region is more significant than the con-
verging section. This is mainly due to the notice-
able difference between the average size of the
cross-section areas of the two main parts (see Fig.
2). Temperature rise in these simulations is found
to be within 2–3°C. Tables III and IV give the
calculated and experimentally measured flow
rates and pressure corresponding to each screw
rotational speed, in screw channel and die, re-
spectively. For the flow in the screw channel, the
mass flow rates are also computed based on the
method presented by Fenner in refs. 3 and 5. As it
can be seen, there is very good agreement be-
tween the calculated results and actual data for
the flow in both systems. Also, the comparison
between the results of the simulation in the
present work and those obtained based on the use
of the Fenner’s method confirms that the three-
dimensional finite element analysis leads to more

Table IV Calculated and Experimental Mass Flow Rate and Pressure in Die

Screw
Speed
(rpm)

Input
Pressure

(MPa)

Mass Flow Rate,
Experimental

(g/s)

Mass Flow
Rate,

Calculated by
FEM (g/s)

Pressure
Measured at
1st Locationa

(MPa)

Pressure
Measured

at 2nd
Locationa

(MPa)

Pressure
Calculated at
1st Location

(MPa)

Pressure
Calculated at
2nd Location

(MPa)

10 3.03 0.105 0.093 2.17 0.45 2.10 0.44
20 4.61 0.215 0.214 3.25 0.65 3.22 0.67
30 5.69 0.321 0.326 3.97 0.81 3.96 0.83
40 6.42 0.425 0.416 4.48 0.93 4.46 0.93
50 7.13 0.525 0.513 4.94 0.97 4.97 1.04
60 7.72 0.629 0.602 5.33 1.10 5.36 1.12

a See Figure 2.

Table III Calculated and Experimental Flow Rates in Screw Channel

Screw Speed
(RPM)

Input
Pressure

(MPa)

Output
Pressure

(MPa)

Mass Flow Rate,
Experimental

(g/s)

Mass Flow Rate,
Calculated by FEM

(g/s)

Mass Flow Rate,
Calculated by

Fenner’s Method
(g/s)

10 3.8 3.03 0.105 0.105 0.115
20 5.39 4.61 0.215 0.205 0.223
30 6.78 5.69 0.321 0.311 0.338
40 7.43 6.42 0.425 0.408 0.443
50 8.27 7.13 0.525 0.511 0.554
60 8.77 7.72 0.629 0.606 0.657
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accurate results. To determine the extruder oper-
ating points associated with each screw rotational
speed, the screw and die characteristic curves are
found. These curves are shown in Figure 9. The
intersection between each screw characteristic
curve and the characteristic curve of the die gives
the extruder operating points. These points are

shown in Figure 9 by six arrow symbols. Table V
also gives the numerical values of the calculated
operating points along with their experimentally
measured values. It can be seen here that there
are also very good agreements between the actual
values of the operating points and the calculated
ones.

Figure 9 Characteristic curves of the screw and die with operating points.

Table V Calculated and Experimental Operating Points of Extruder at Various Screw Speeds

Screw Speed
(RPM)

Flow Rate (g/s) Pressure (MPa)

Experimental Calculated Experimental Calculated

10 0.105 0.103 3.03 3.22
20 0.215 0.207 4.61 4.53
30 0.321 0.314 5.69 5.58
40 0.425 0.410 6.42 6.37
50 0.525 0.511 7.13 7.12
60 0.629 0.606 7.72 7.75
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CONCLUSION

Using powerful finite element technique, we have
developed a mathematical model for the three-
dimensional analysis of the flow of generalized
Newtonian fluids through the metering and die
regions of single screw extruders. Comparisons of
the numerical results and experimental measure-
ments for the flow of a polypropylene melt show
good agreement between these sets of data.
Therefore, the developed model can very effec-
tively cope with the simulation of the flow of poly-
meric fluids in the metering and die zones of
single screw extruders and provides a straightfor-
ward and reliable method for such problems.

APPENDIX

—Flow equations,

F @K11# @K12# @K13#
@K21# @K22# @K23#
@K31# @K32# @K33#

G F $nx%
$ny%
$nz%

G 5 F $F1%
$F2%
$F3%

G (15)

where

~K11!ij 5 EEEFrCiSn#x

­Cj

­x 1 n#y

­Cj

­y 1 n#z

­Cj

­z D
1 S2h

­Ci

­x
­Cj

­x 1 h
­Ci

­y
­Cj

­y 1 h
­Ci

­z
­Cj

­z D
1 l*S­Ci

­x
­Cj

­x DGdx dy dz (16)

~K12!ij 5 EEEFhS­Ci

­y
­Cj

­x D
1 l*S­Ci

­x
­Cj

­y DG dx dy dz (17)

~K13!ij 5 EEEFhS­Ci

­z
­Cj

­x D
1 l*S­Ci

­x
­Cj

­z DG dx dy dz (18)

~K21!ij 5 EEEFhS­Ci

­x
­Cj

­y D
1 l*S­Ci

­y
­Cj

­x DG dx dy dz (19)

~K22!ij 5 EEEFrCiSn#x

­Cj

­x 1 n#y

­Cj

­y 1 n#z

­Cj

­z D
1 S2h

­Ci

­y
­Cj

­y 1 h
­Ci

­x
­Cj

­x 1 h
­Ci

­z
­Cj

­z D
1 l*S­Ci

­y
­Cj

­y DG dx dy dz (20)

~K23!ij 5 EEEFhS­Ci

­z
­Cj

­y D
1 l*S­Ci

­y
­Cj

­z DG dx dy dz (21)

~K31!ij 5 EEEFhS­Ci

­x
­Cj

­z D
1 l*S­Ci

­z
­Cj

­x DG dx dy dz (22)

~K32!ij 5 EEEFhS­Ci

­y
­Cj

­z D
1 l*S­Ci

­z
­Cj

­y DG dx dy dz (23)

~K33!ij 5 EEEFrCiSn# x

­Cj

­x 1 n# y

­Cj

­y 1 n# z

­Cj

­z D
1 S2h

­Ci

­z
­Cj

­z 1 h
­Ci

­y
­Cj

­y 1 h
­Ci

­x
­Cj

­x D
1 l*S­Ci

­z
­Cj

­z DG dx dy dz (24)

and

~F1!i 5 E
G

Ci~2pnx 1 txxnx 1 tyxny 1 tzxnz! dG (25)

~F2!i 5 E
G

Ci~2pny 1 txynx 1 tyyny 1 tzynz! dG (26)

~F3!i 5 E
G

Ci~2pnz 1 txznx 1 tyzny 1 tzznz! dG (27)

—Energy (Heat) Equation,
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~Kn!ij 5 EEEHrCrFCi 1 FSnx

­Ci

­x

1 ny

­Ci

­y 1 nz

­Ci

­z DG Snx

­Cj

­x 1 ny

­Cj

­y

1 nz

­Cj

­z DJ dx dy dz (28)

~Kd!ij 5 EEEHkS­Ci

­x
­Cj

­x 1
­Ci

­y
­Cj

­y

1
­Ci

­z
­Cj

­z DJ dx dy dz (29)

~FT!i 5 E
G

CiFkS­T
­x nx 1

­T
­y ny 1

­T
­z nzD GdG

1 EEE CiQ dx dy dz (30)

In these equations, ci and cj are the Lagrangian
interpolation (weight) functions, respectively, G is
the boundary of the flow domain, and nx, ny , and
nz are the components of the unit vector normal to
the boundary in the outward direction.
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